Función seno El seno de un ángulo en el círculo trigonométrico es igual a su medida en el eje de las ordenadas. En un ángulo interno en el círculo trigonométrico cuyos segmentos son igual al radio 1, el seno será la proyección del segmento móvil sobre el eje de las ordenadas Y . Imaginemos una linterna iluminando este segmento móvil dentro del círculo. La sombra que proyecta el segmento sobre el eje Y será el valor del seno. Cuando se grafica el seno a medida que el segmento se abre, el seno crece hasta ser igual a 1, cuando el ángulo es igual a 90º o 1/2π. Desde los 90º a los 180º el seno se reduce pero sigue siendo positivo. Por encima de los 180º el seno toma valores negativos hasta llegar a los 360º. Los valores del seno se hallan entre 1 y -1. Función coseno El coseno de un ángulo en el círculo trigonométrico es igual a su medida en el eje de las abscisas. En un ángulo interno en el círculo trigonométrico cuyos segmentos son igual al radio 1, el coseno será la proyecci
ngulos coterminales . Los ángulos coterminales son ángulos en posición estándar ( ángulos con el lado inicial en el eje positivo de las x ) que tienen un lado terminal común. Por ejemplo 30°, –330° y 390° son todos coterminales . Para encontrar un ángulo coterminal positivo y uno negativo con un ángulo dado, puede sumar y restar 360° si el ángulo es medido en grados o 2π si el ángulo es medido en radianes . Ejemplo 1: Encuentre un ángulo coterminal positivo y uno negativo con un ángulo de 55°. 55° – 360° = –305° 55° + 360° = 415° Un ángulo de –305° y un ángulo de 415° son coterminales con un ángulo de 55°. Ejemplo 2: Encuentre un ángulo coterminal positivo y uno negativo con un ángulo de . Un ángulo de y un ángulo de son coterminales con un ángulo de .