Ir al contenido principal

MECÁNICA DE CELESTE

La Mecánica celeste es una rama de la astronomía y la mecánica que tiene por objeto el estudio de los movimientos de los cuerpos en virtud de los efectos gravitatorios que ejercen sobre él otros cuerpos celestes. Se aplican los principios de la física conocidos como mecánica clásica Ley de la Gravitación Universal de Isaac Newton). Estudia el movimiento de dos cuerpos, conocido como problema de Kepler, el movimiento de los planetas alrededor del Sol, de sus satélites y el cálculo de las órbitas de cometas y asteroides. Es la ciencia que estudia el movimiento y las mutuas atracciones gravitacionales de los cuerpos celestes en el espacio

Breve historia del desarrollo de la mecánica celeste[editar]

Kepler fue el primero en desarrollar las leyes que rigen las órbitas a partir de observaciones empíricas del movimiento de Marte apoyadas, en gran parte, en observaciones astronómicas realizadas por Tycho Brahe. Años después, Newton desarrolló su ley de gravitación basándose en el trabajo de Kepler.
Isaac Newton introdujo la idea de que el movimiento de los objetos en el cielo, como los planetas, el Sol, la Luna, y el movimiento de objetos en la Tierra, como las manzanas que caen de un árbol, podría describirse por las mismas leyes de la Física. En este sentido él unificó la dinámica celeste y terrestre por eso su Ley de gravitación se llama Universal.
Usando la ley de Newton de gravitación, se pueden demostrar las leyes de Kepler. Esta demostración es fácil para el caso de una órbita circular y más difícil para las órbitas elípticasparabólicas e hiperbólicas. En el caso de la órbita de dos cuerpos aislados, por ejemplo el Sol y la Tierra, encontrar la situación en un momento posterior, conociendo previamente la posición y velocidad de la Tierra en un momento inicial, se conoce como el (problema de los dos cuerpos) y está totalmente resuelto, es decir, hay un conjunto de fórmulas que permiten hacer el cálculo.
Si el número de cuerpos implicados es tres o más el problema no está resuelto. La solución del problema de los n-cuerpos (que es el problema de encontrar, dado las posiciones iniciales, masas, y velocidades de n cuerpos, sus posiciones para cualquier instante) no está resuelto por la mecánica clásica. Solo determinadas simplificaciones del problema tienen solución general.

Los movimientos de tres cuerpos se pueden resolver en algunos casos particulares. El movimiento de la Luna influido por el Sol y la Tierra refleja la dificultad de este tipo de problemas y ocupó la mente de muchos astrónomos durante siglos.

Determinación de órbitas[editar]

La mecánica celeste se ocupa de calcular la órbita de un cuerpo recién descubierto y del que se tienen pocas observaciones; con tres observaciones ya se puede calcular los parámetros orbitales. Calcular la posición de un cuerpo en un instante dado conocida su órbita es un ejemplo directo de mecánica celeste. Calcular su órbita conocidas tres posiciones observadas es un problema mucho más complicado.
La planificación y determinación de órbitas para una misión espacial interplanetaria también es fruto de la mecánica celeste. Una de las técnicas más usadas es utilizar el tirón gravitatorio para enviar a una nave a otro planeta cuando el combustible del cohete no hubiera permitido tal acción. Se hace pasar a la nave a una corta distancia de un planeta para provocar su aceleración.


Ejemplos de problemas[editar]

El problema de tres o más cuerpos no es un problema teórico sino que la naturaleza está llena de ellos, lo que nunca se da en la naturaleza es el problema de dos cuerpos que es una situación irreal que no se produce. Algunos ejemplos:
  • Movimiento de Alfa Centauri C bajo la acción de la estrella binariaAlfa Centauri (dos componentes de aproximadamente la misma masa).
  • Movimiento de una sonda espacial aproximándose a un planeta doble, por ejemplo Plutón con su luna Caronte (la proporción de masa 0,147)
  • El movimiento de la nave Apollo 11 en su viaje a la Luna, sometida a la atracción de la Tierra y la Luna.
  • Órbita de un planeta, por ejemplo Mercurio, alrededor del Sol y sometido a la acción de todos los demás planetas.
  • La mecánica celeste es una disciplina de las matemáticas que estudia las ecuaciones de movimiento de los cuerpos celestes que provienen de la ley de gravitación universal formulada por Newton en su célebre obra Principia Mathematica.

Comentarios

Entradas populares de este blog

MOVIMIENTO CIRCULAR UNIFORME

En física, el  movimiento circular uniforme  (también denominado  movimiento uniformemente circular ) describe el movimiento de un cuerpo con una rapidez constante y una  trayectoria  circular. Aunque la rapidez del objeto y la magnitud de su  velocidad  son constantes, en cada instante cambia de dirección. Circunstancia que implica la existencia de una  aceleración  que, si bien en este caso no varía al módulo de la velocidad, sí varía su dirección. Índice Cinemática del MCU en mecánica clásica [ editar ] Ángulo y velocidad angular [ editar ] El ángulo abarcado en un movimiento circular es igual al cociente entre la longitud del arco de circunferencia recorrida y el radio. La longitud del arco y el radio de la circunferencia son magnitudes de longitud, por lo que el desplazamiento angular es una magnitud adimensional, llamada  radián . Un radián es un arco de circunferencia de longitud igual al radio de la circunferencia, y la circunferencia completa tiene  {\disp

RAZONES TRIGONOMÉTRICAS

Función seno El seno de un ángulo en el círculo trigonométrico es igual a su medida en el eje de las ordenadas. En un ángulo interno en el círculo trigonométrico cuyos segmentos son igual al radio 1,  el seno será la proyección del segmento móvil sobre el eje de las ordenadas Y . Imaginemos una linterna iluminando este segmento móvil dentro del círculo. La sombra que proyecta el segmento sobre el eje Y será el valor del seno. Cuando se grafica el seno a medida que el segmento se abre, el seno crece hasta ser igual a 1, cuando el ángulo es igual a 90º o 1/2π. Desde los 90º a los 180º el seno se reduce pero sigue siendo positivo. Por encima de los 180º el seno toma valores negativos hasta llegar a los 360º. Los valores del seno se hallan entre 1 y -1. Función coseno El coseno de un ángulo en el círculo trigonométrico es igual a su medida en el eje de las abscisas. En un ángulo interno en el círculo trigonométrico cuyos segmentos son igual al radio 1,  el coseno será la proyecci

CALCULO DE LAS RAZONES TRIGONOMÉTRICAS USANDO ÁNGULOS DE REFERENCIA

si un angulo en posición normal ubicado en el  segundo cuadrante entonses su angulo de referencia es 180 y si se cumple tercer cuadrante es 180 cuarto cuadrante es de 360